If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x^2=120
We move all terms to the left:
x+x^2-(120)=0
a = 1; b = 1; c = -120;
Δ = b2-4ac
Δ = 12-4·1·(-120)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{481}}{2*1}=\frac{-1-\sqrt{481}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{481}}{2*1}=\frac{-1+\sqrt{481}}{2} $
| -9(w+3)=4w+38 | | -2.12=3+y/4 | | 35+x+15=180 | | x-(0.026x+0.03)=100 | | w/7+4.3=-18.1 | | 2s+7=31 | | 2+10x=180 | | 3x+2-x=-10 | | 0.2(2x-1)=0.2x+0.0 | | 3(-2x+1)=9 | | 14x-13+8x-15=180 | | 5x=6x+11 | | 14x-13=8x-15 | | 5(4x-6)=10 | | .(n+8)+(n−12)= | | 28-3x=-8 | | 7x-16÷2=2x-3 | | 144x=1018 | | y=-0.36+12.6 | | 10/6=x/9 | | 32x–3=3x+5 | | 3x+28=6x+8/2 | | 4x-2+×=-4+3×+2 | | 5(b+2)=2b | | 0.5(4x-6)+9x=52 | | 6x+7x=250 | | 7x7=9 | | 3,80+3x=49,30 | | 180(6x+7x)=360 | | 180=7x+6x | | 14*y=140 | | M3+m3=2m3 |